Exaggerated hypoxic pulmonary hypertension in endothelin B receptor-deficient rats.
نویسندگان
چکیده
Mechanisms by which endothelin (ET)-1 mediates chronic pulmonary hypertension remain incompletely understood. Although activation of the ET type A (ET(A)) receptor causes vasoconstriction, stimulation of ET type B (ET(B)) receptors can elicit vasodilation or vasoconstriction. We hypothesized that the ET(B) receptor attenuates the development of hypoxic pulmonary hypertension and studied a genetic rat model of ET(B) receptor deficiency (transgenic sl/sl). After 3 wk of severe hypoxia, the transgenic sl/sl pulmonary vasculature lacked expression of mRNA for the ET(B) receptor and developed exaggerated pulmonary hypertension that was characterized by elevated pulmonary arterial pressure, diminished cardiac output, and increased total pulmonary resistance. Plasma ET-1 was fivefold higher in transgenic sl/sl rats than in transgenic controls. Although mRNA for prepro-ET-1 was not different, mRNA for ET-converting enzyme-1 was higher in transgenic sl/sl than in transgenic control lungs. Hypertensive lungs of sl/sl rats also produced less nitric oxide metabolites and 6-ketoprostaglandin F(1alpha), a metabolite of prostacyclin, than transgenic controls. These findings suggest that the ET(B) receptor plays a protective role in the pulmonary hypertensive response to chronic hypoxia.
منابع مشابه
Endothelin B receptor deficiency predisposes to pulmonary edema formation via increased lung vascular endothelial cell growth factor expression.
Endothelin (ET) may contribute to pulmonary edema formation, particularly under hypoxic conditions, and decreases in ET-B receptor expression can lead to reduced ET clearance. ET increases vascular endothelial cell growth factor (VEGF) production in vitro, and VEGF overexpression in the lung causes pulmonary edema in vivo. We hypothesized that pulmonary vascular ET-B receptor deficiency leads t...
متن کاملDevelopment of occlusive neointimal lesions in distal pulmonary arteries of endothelin B receptor-deficient rats: a new model of severe pulmonary arterial hypertension.
BACKGROUND Human pulmonary arterial hypertension (PAH) is characterized by proliferation of vascular smooth muscle and, in its more severe form, by the development of occlusive neointimal lesions. However, few animal models of pulmonary neointimal proliferation exist, thereby limiting a complete understanding of the pathobiology of PAH. Recent studies of the endothelin (ET) system demonstrate t...
متن کاملEndothelin B receptor deficiency potentiates ET-1 and hypoxic pulmonary vasoconstriction.
Endothelin (ET)-1 contributes to the regulation of pulmonary vascular tone by stimulation of the ET(A) and ET(B) receptors. Although activation of the ET(A) receptor causes vasoconstriction, stimulation of the ET(B) receptors can elicit either vasodilation or vasoconstriction. To examine the physiological role of the ET(B) receptor in the pulmonary circulation, we studied a genetic rat model of...
متن کاملHypoxic pulmonary hypertension is prevented in rats with common bile duct ligation.
Biliary cirrhosis in the rat triggers intrapulmonary vasodilatation and gas-exchange abnormalities that characterize the hepatopulmonary syndrome. This vasodilatation correlates with increased levels of pulmonary microcirculatory endothelial NO synthase (eNOS) and hepatic and plasma endothelin-1 (ET-1). Importantly, during cirrhosis, the pulmonary vascular responses to acute hypoxia are blunted...
متن کاملALUNG Apr. 20/4
Sato, Koichi, David M. Rodman, and Ivan F. McMurtry. Hypoxia inhibits increased ETB receptor-mediated NO synthesis in hypertensive rat lungs. Am. J. Physiol. 276 (Lung Cell. Mol. Physiol. 20): L511–L581, 1999.—Although hypertensive lungs of chronically hypoxic rats express increased levels of nitric oxide (NO) synthases (NOSs) and produce increased amounts of NO-containing compounds (NOx) durin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 282 4 شماره
صفحات -
تاریخ انتشار 2002